
René Moletta

coordonnateur

La méthanisation

La méthanisation

Chez le même éditeur

Écotoxicochimie appliquée aux hydrocarbures A. Picot, F. Montandon, 2013

Le traitement des déchets R. Moletta, 2009

Les polluants et les techniques d'épuration des fumées : Cas des unités de traitement et de valorisation des déchets. État de l'art S. Bicocchi, M. Boulinguez, K. Diard, 2^e édition, 2009

Pollution atmosphérique : Des processus à la modélisation Collection « Ingénierie et développement durable » B. Sportisse, 2007

Gestion des problèmes environnementaux dans les industries agroalimentaires Collection « Sciences et techniques agroalimentaires » R. Moletta, 2e édition, 2006

La méthanisation

3^e édition

René Moletta Coordonnateur

Direction éditoriale : Fabienne Roulleaux Édition : Céline Bénard, Solène Le Gabellec Fabrication : Estelle Perez Couverture : Isabelle Godenèche Mise en page : Nord Compo, Villeneuve-d'Ascq Impression : Chirat, Saint-Just-la-Pendue

© 2015, Lavoisier, Paris

ISBN: 978-2-7430-1991-4

Sommaire

Liste des auteurs	XIII
Connaissance de la méthanisation	
Chapitre 1	
La méthanisation dans la problématique énergétique et environnementale	
1. La méthanisation 2. Apport de la méthanisation 2.1. Dépollution des eaux usées 2.2. Traitement des déchets 3. Environnement et énergie 4. Place de la méthanisation dans les politiques énergétiques de demain 4.1. Les différentes filières de biocarburants. 4.2. Position de la méthanisation 5. Conclusion.	3 4 4 5 5 6 8
Chapitre 2	
Aspects biochimiques et microbiologiques de la méthanisation	
1. Les réactions enzymatiques (la biochimie) 1.1. Les grandes étapes de la digestion anaérobie 1.2. Les conditions physico-chimiques 2. Les micro-organismes actifs (la microbiologie) 2.1. Les méthodes d'investigation. 2.2. La fonctionnalité des micro-organismes impliqués. Qui fait quoi ou qui peut faire quoi? 2.3. Diversité des micro-organismes: une vision moléculaire 3. La vision dynamique (l'écologie). 4. Effet de la digestion anaérobie sur les germes pathogènes. 4.1. Les paramètres biotiques 4.2. Les paramètres abiotiques.	12 13 16 18 18 19 30 32 33 33 34
Chapitre 3	
Caractérisation de la mise en œuvre de la méthanisation	
1. Principe de fonctionnement des réacteurs de méthanisation 1.1. Conversion de la matière organique 1.2. Le potentiel méthanogène 1.3. Les différents modes de mise en œuvre de la méthanisation 1.4. Les grandes familles de procédés de méthanisation	39 39 41 42 43

VI La méthanisation

2.	Les paramètres opérationnels des réacteurs	46
	2.1. Quelques définitions	46
	2.2. Vitesse de la réaction biologique	50
3.	Les conditions de mise en œuvre des réacteurs	50
	3.1. pH	51
	3.2. Alcalinité	51
	3.3. Acides gras volatils (AGV)	51
	3.4. DCO	51
	3.5. Nutriments.	52
	3.6. Débit et composition du biogaz	52
4.	Stabilité des digesteurs	53
	4.1. Rôle de l'hydrogène dans le fonctionnement des digesteurs	53
	4.2. Les surcharges organiques : causes et conséquences	54
	4.3. Les principaux inhibiteurs de la digestion anaérobie	55
5.	Démarrage des réacteurs	56
	5.1. L'inoculation	56
	5.2. La stratégie de montée en charge	58
	5.3. Le rendement en méthane : un paramètre de mesure de la formation	
	du biofilm	59
	5.4. Exemple d'application : démarrage d'un réacteur pilote à lit fixe de 1 m $^3 \dots$	61
	Législation	
	•	
	Chapitre 4	
	Aspects législatifs de la digestion anaérobie	
1.	La réglementation applicable aux unités de traitement de déchets	
	par méthanisation	71
	1.1. Les unités de traitement par méthanisation	71
	1.2. La valorisation du digestat	75
	1.3. La valorisation du biogaz	76
2.	Les risques	81
3.	Annexes	81
	Chapitre 5	
	Les aspects Sécurité de la méthanisation	
1.	Risques liés à la composition du biogaz	85
	1.1. Propriétés du biogaz	88
	1.2. Risques, impacts et nuisances liés au biogaz	88
	1.3. Risques d'inflammation : explosion, incendie	89
	1.4. Caractéristiques de toxicité	93
	1.5. Caractéristiques d'anoxie	95
	1.6. Impacts sur les équipements : formation de dépôts et corrosion	95
	1.7. Altération des propriétés physiques des matériaux en PEHD	97
2.	Retour d'expérience (REX) relatif aux procédés de méthanisation et à leur	
	exploitation	98
3.	Potentiels de dangers des phénomènes accidentels	101
	3.1. Analyse des risques	101
	3.2. Classement de zones ATEX	102
	3.3. Mesures de sécurité techniques et organisationnelles	112

Sommaire VII

Stratégies et traitements

Chapitre 6

Technologies de traitement des efflue	ents ind	ustriels
par la méthanisation		

1. Réacteurs biologiques	123 125 127 132
Bases de choix et de dimensionnement des digesteurs anaérobies. Choix de la technologie Base de dimensionnement. Stabilité des digesteurs.	133 133 134 135
3. Le biogaz 3.1. Production théorique 3.2. Facteurs modifiant les caractéristiques du biogaz 3.3. Traitement du biogaz 3.4. Valorisation	136 136 137 137 139
4. Performances des digesteurs anaérobies	139
5. Conclusion	140
Chapitre 7	
Technologies de la méthanisation de la biomasse :	
déchets ménagers	
1. Substrats solides	141
1.1. Les ordures ménagères	141
1.2. Les résidus agricoles	142 143
1.3. Les sous-produits agro-industriels	143
1.5. Pérennité des approvisionnements	143
2. Stratégies technologiques	143
2.1. Réacteurs limites	144
2.2. Réacteurs discontinus	145
2.3. Méthanisation en une étape ou deux étapes	145
2.4. Condition de mise en œuvre de la méthanisation des déchets	146
3. Méthanisation de la fraction organique des ordures ménagères	148
3.1. Principe du traitement des ordures ménagères (et déchets assimilés)	148
3.2. Technologies appliquées à la digestion « liquide »	149
	150
3.4. Performances des digesteurs sur ordures ménagères	152
4. Exemple d'une unité de méthanisation de biodéchets à Engelskirchen	
(Allemagne)	153
4.1. Caractéristiques des déchets	156 156
4.2. Description de l'usine	156
4.4. Bilan matière.	158
4.5. L'investissement	158
	158

VIII La méthanisation

Chapitre 8

La méthanisation à la ferme

	61 65
1.2. Detential méthonogène des sous produits agricoles	65
1.2. Potentier methanogene des sous-produits agricoles	
2. Technologies	66
2.1. Caractéristiques de leurs mises en œuvre	66
2.2. Schéma de principe de l'installation d'un digesteur agricole 16	69
2.3. Prétraitements	70
2.4. Technologies appliquées à la digestion des déchets agricoles	70
3. Préparation des intrants	79
3.1. Considération sur les matières à méthaniser	79
3.2. Les macro- et micronutriments	81
4. Les inhibitions	83
	83
	83
	34
· · · ·	85
	85
	85
	85
	36
·	87
	87
3 . 3 /	89
· · · · · · · · · · · · · · · · · · ·	89
,	39 89
	39
	91
- · · · · · · · · · · · · · · · · · · ·	92
	94
	95
	96
· ·	96
	96
,	98
10.4. Quels modèles pour la France ?	
11. Exemple d'application de la digestion anaérobie aux déchets agricoles :	
installation à la ferme de Petersauach	01
Chapitre 9	
La méthanisation des boues	
1. Les paramètres influant sur les performances de la méthanisation des boues 20	07
1.1. Critères d'évaluation des performances	
1.2. La température	80
==	10
	10
J	12
1.6. La régularité de l'alimentation	12

Sommaire IX

2.	Les atouts de la digestion anaérobie	212 212
	2.2. La valorisation matière.	213
	2.3. La valorisation énergétique	214 217
2	Types et dimensionnement des digesteurs de boues	219
	Conception des digesteurs de boues	220
٠.	4.1. Brassage des digesteurs	220
	4.2. Chauffage des digesteurs	225
	4.3. Forme des digesteurs	227
	4.4. Démarrage et conduite d'une installation de digestion	229
5.	Procédés susceptibles d'améliorer les performances de la digestion anaérobie	230
	5.1. Prétraitements thermiques	231
	5.2. Prétraitements enzymatiques	231
	5.3. Prétraitements mécaniques	231
	5.4. Prétraitements par ultrasons	232
	5.5. Prétraitements chimiques	232
	Chapitre 10	
	L'élimination et la méthanisation des déchets non dangereux	
	en installation de stockage	
1.	La filière stockage en France, en Europe et dans le monde	235
	1.1. De la décharge à l'installation de stockage : une filière en pleine mutation	235
	1.2. Part du stockage parmi les différentes filières de traitement	237
2.	Caractéristiques techniques des ouvrages de stockage de déchets	238
	2.1. Localisation du site et aménagement	238
	2.2. Barrières de confinement (fond et couverture)	239
	2.3. L'admission des déchets et la phase d'exploitation	241
	2.4. Dégradation des déchets stockés	243
	2.5. Lixiviats	248 251
	2.6. Le biogaz	253
	2.8. Conclusion	254
3	Du stockage-confinement au traitement biologique <i>ex situ</i> et <i>in situ</i>	255
٠.	3.1. Le prétraitement mécano-biologique (PTMB) avant stockage	255
	3.2. Installations de stockage bioactives	260
4.	. Conclusion	265
	Chapitre 11	
	Prétraitements	
1	Introduction	269
	Traitements thermiques	273
۷.	2.1. Application aux boues	274
	2.2. Application aux résidus solides	279
3.	Traitements mécaniques	281
٠.	3.1. Broyage	281
	3.2. Ultrasons	283
	3.3. Centrifugation	287
	3.4. Hautes pressions	289
	3.5. Champs électriques pulsés	291

X La méthanisation

4.	Procédés biologiques	291
5	Procédés de séparation pour éliminer les composés inhibiteurs	
	Conclusion	
	Chapitre 12	
	Les applications de la digestion anaérobie	
1.	Traitement anaérobie des effluents urbains	303
	1.1. Introduction	
	1.2. Le traitement anaérobie des eaux urbaines comme technologie durable	304
	1.3. Les réacteurs UASB pour le traitement des eaux usées	306
	1.4. Post-traitement des effluents des réacteurs UASB	
	des eaux usées municipales	311
_	1.5. Conclusions	314
۷.	Piles à combustible	314 315
	2.1. Présentation des différents types de piles à combustible	318
	2.3. Reformage interne (piles à haute température)	
	2.4. Exemples de réalisations, prototypes	
	Chapitre 13	
	Suivi analytique des procédés de méthanisation	224
	Importance et nature du suivi analytique	
	Paramètres analysés	
	Principes et techniques de mesures	335
4.	Caractérisation des substrats	338
	4.1. Caractérisation non spécifique de la matière	339 341
	4.3. Potentiel méthanogène	342
	4.4. Essais en laboratoires, essais pilotes	344
	4.5. Toxicité, excès et carence	345
5.	Suivi du procédé de digestion anaérobie	346
	5.1. Caractérisation du milieu de fermentation	346
	5.2. Suivi analytique de la production de biogaz	357
	5.3. Caractérisation du digestat	360
6.	Conclusion	363
	Chapitre 14	
	Instrumentation, modélisation et commande des digesteurs	
1.	Instrumentation des digesteurs	369
	1.1. Positionnement du problème.	369
	1.2. Exemples de mesures disponibles sur un digesteur anaérobie	373
2.	Modélisation par bilan matière de la digestion anaérobie	381
	2.1. Cinétique biologique de la digestion anaérobie	382
_	2.2. Modélisation bilan matière des réacteurs	391
3.	Commande des digesteurs	402

Sommaire XI

Le biogaz

Chapitre 15

	Diagnostic « qualité » d'un biogaz en vue de sa valorisation	
1. I	ntroduction	419
2. F	Perspectives de développement de la valorisation	420
	Notion de qualité(s) d'un biogaz	421
	3.1. Intérêt d'une bonne connaissance de la qualité de son biogaz	421
	3.2. Qualité énergétique d'un biogaz	422
	3.3. Qualité intrinsèque d'un biogaz en vue de sa valorisation	423
	Problématiques associées à la présence de silicium et de soufre	424
	4.1. Composés Organiques Volatils Siliciés (COVSi)	424
	4.2. Composés soufrés	432 436
	/ariabilité de la composition d'un biogaz	430
	5.2. Variabilité sur le moyen terme (cas des COVSi)	438
	5.3. Variabilité sur le court terme (cas du H ₂ S et du H ₂ O)	440
	Silan et conclusion	441
0. 2		
	Chapitre 16	
	Traitement et valorisation du biogaz issu d'un réacteur anaérobie	
1. (Composition du biogaz	446
	ntérêt de la valorisation énergétique du biogaz	446
3. L	es filières de valorisation énergétique du biogaz	450
	3.1. Stockage du biogaz	450
	3.2. Prétraitement du biogaz	451
	3.3. Les principales voies de valorisation du biogaz	455
-	3.4. Critères de rentabilité de la valorisation du biogaz par chaudière ou cogénération	461
	3.5. Bilan énergétique d'un digesteur anaérobie	462
	3.6. Consommation électrique	463
	3.7. Consommation de chaleur	464
	3.8. Un exemple de valorisation du biogaz : la station Artois Méthanisation	464
	es principales voies d'enrichissement du biogaz	466
4	4.1. Injection dans le réseau	467
	4.2. Utilisation du biogaz en GNV	467
	4.3. Techniques d'enrichissement du biogaz	468
4	4.4. Exemples d'enrichissement de biogaz à Lille : la Step de Marquette-lez-Lille	470
	et le CVO de Sequedin	478
	Chapitre 17	
	La cogénération	
	es technologies disponibles	483
	1.1. Les micro-turbines	483
	1.2. Les moteurs biogaz	484
	Dimensionner l'installation aux conditions réelles de fonctionnement	485
3. L	a qualité du biogaz	485
4. (Optimiser les revenus	485

XII La méthanisation

5. Maîtriser les coûts d'exploitation 6. Incertitudes des équipements de mesures 6.1. Compteur de chaleur 6.2. Analyseur biogaz en continu 6.3. Débitmètre biogaz 6.4. Compteur électrique	486 487 487 487 488 488
6.5. Calcul des incertitudes	
	400
Aspects économiques	
Chapitre 18	
L'économie de la méthanisation	
1. Introduction	493
2. Définition des besoins	494
3. Typologies de projet	495
3.1. Agricoles (ou « à la ferme »)	495
3.2. Industriels	495
3.3. Territoriaux	496
4. Investissements	496
5. Exploitation	498 498
5.2. Les produits	498
5.3. Les charges	499
5.4. L'analyse des soldes intermédiaires de gestion	500
6. Financement	501
7. Structures d'investissement	503
Index	505

Liste des auteurs

Thierry Arnaud

Veolia Environnement, Saint-Maurice

Sylvaine Berger

Solagro, Toulouse

Nicolas Bernet

Laboratoire de Biotechnologie de l'environnement – INRA, Narbonne

Théodore Bouchez

Unité de recherche Hydrosystèmes et Bioprocédés (HBAN), Irstea, Antony

Pierre Buffiere

Laboratoire de Biotechnologie de l'environnement – INRA, Narbonne

Yann Bultel

Laboratoire d'Électrochimie et de Physicochimie des matériaux et des interfaces, Institut Polytechnique, Saint-Martin-d'Hères

Patricia Camacho

Suez-Environment, Le Pecq

Hélène Carrere

Laboratoire de Biotechnologie de l'environnement – INRA, Narbonne

Olivier Chapleur

Unité de recherche Hydrosystèmes et Bioprocédés (HBAN), Irstea, Antony

Vincent Chatain

Laboratoire Génie civil et Ingénierie environnementale, INSA, Lyon

Club Biogaz ATEE

Arcueil

Christian Couturier

Solagro, Toulouse

Romain Cresson

INRA Transfert Environnement, Narbonne

Marina Denat

INRA Transfert Environnement, Narbonne

Jacques Fouletier

Laboratoire d'Électrochimie et de Physicochimie des matériaux et des interfaces, Université Joseph Fourier, Saint-Martin-d'Hères XIV La méthanisation

Hélène Fruteau de Laclos

Methaconsult, Préverenges, Suisse

Sébastien Evanno

INERIS, Verneuil-en-Halatte

Samuel Georges

Laboratoire d'Électrochimie et de Physicochimie des matériaux et des interfaces, Université Joseph-Fourier, Saint-Martin-d'Hères

Patrick Germain

Laboratoire de Génie civil et d'Ingénierie environnementale, INSA, Lyon

Jean-Jacques Godon

Laboratoire de Biotechnologie de l'environnement – INRA, Narbonne

Orane Gricourt

Veolia Environnement, Saint-Maurice

Xavier Joly

GASEO, Le Bourget-du-Lac

Jean-Marie Klein

Laboratoire du Stockage électrochimique, CEA GRENOBLE – 1NES, Le Bourget-du-Lac

Éric Latrille

Laboratoire de Biotechnologie de l'environnement – INRA, Narbonne

Hélène Métivier-Pignon

Laboratoire Génie civil et Ingénierie environnementale, INSA, Lyon

René Moletta

Moletta Méthanisation, Novalaise

Adalberto Noyola

Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM)

Claude Prevot

DEGREMONT, Rueil-Malmaison

Jean-Philippe Steyer

Laboratoire de Biotechnologie de l'environnement – INRA, Narbonne

Lionel Tricot

Rhônalpénergie-Environnement (RAEE), Villeurbanne

Willy Verstraete

LabMET, Université de Gand, Belgique

Préface de la troisième édition

Docteur Jekyll et Mister Hyde

Alessandro Volta, à la fin du XVIII^e siècle, remarque « l'air inflammable des marais, un air qui brûle très lentement avec une belle flamme bleue ». Plus tard appelé « méthane », cet « air » provient de la décomposition de la matière organique par une communauté microbienne complexe, en l'absence d'oxygène. La production de méthane – la méthanisation – se rencontre naturellement dans les marais, les lacs, comme dans les intestins des animaux et de l'homme, et même peut-être sur... Mars, si cette découverte récente était confirmée.

Docteur Jekyll et Mister Hyde...

Ce processus naturel connaît aujourd'hui une nouvelle importance environnementale, du fait du rôle négatif du méthane comme gaz à effet de serre, mais aussi une nouvelle importance énergétique, car il peut se transformer en alternative positive aux énergies fossiles.

C'est la maîtrise du processus de méthanisation qui permet d'envisager tous les développements positifs liés par exemple à l'élimination des déchets et des résidus organiques que sont les ordures ménagères résiduelles ou les déchets agricoles. Optimiser les technologies de méthanisation des résidus solides, c'est s'offrir une voie originale de production d'énergie : le biogaz produit, constitué principalement de méthane et de gaz carbonique, peut alors être valorisé à travers diverses filières énergétiques.

Les auteurs de cet ouvrage ont développé une expertise incontestable dans ce domaine. Ils se sont attachés à la compréhension, à la modélisation et au comportement des écosystèmes microbiens complexes associés aux systèmes de dépollution. À cet égard, la description de la diversité structurelle et fonctionnelle de ces écosystèmes constitue un préalable indispensable pour fonder de nouvelles pistes de traitement biologique des effluents et des résidus solides. Ces recherches, couplées aux approches de génie microbiologique, de génie des procédés et de génie automatique, sont à la base du développement, sous contraintes économique et environnementale, de nouveaux bioprocédés de traitement dont l'intérêt est incontestable dans le contexte actuel.

XVI La méthanisation

La filière méthanisation des matières solides (coproduits ou déchets) s'est largement développée en France et la stratégie française, fondée principalement sur l'exploitation des gisements de matières organiques déjà présents sur une exploitation ou sur un territoire, a conduit à des adaptations technologiques et à des organisations spécifiques.

Cet ouvrage aborde toutes les facettes de la méthanisation des résidus et des technologies, et présente les acteurs associés. Au-delà des informations les plus récentes qu'il apporte, ce livre pourra emmener le lecteur averti, comme celui qui souhaite comprendre les questions du moment, dans un espace où la technique cède la place à la réflexion et à l'imagination. Ce n'est pas le moindre mérite de cette contribution académique coordonnée par l'expert incontestable du sujet qu'est René Moletta.

Qu'il soit vivement remercié, comme l'ensemble des rédacteurs de cet ouvrage, pour nous avoir fourni cette très utile synthèse des connaissances sur un sujet désormais prioritaire pour l'efficacité environnementale et énergétique, locale et globale.

Marion GUILLOU *Présidente d'Agreenium*

Introduction René Moletta

La réalisation de la troisième édition de cet ouvrage sur la méthanisation montre l'importance de cette filière et de l'intérêt qui lui est porté. Nous devons faire face à une crise énergétique annoncée, à des problèmes d'élimination des déchets et à une pénurie d'eau (notamment potable) perceptible également dans des zones qui, auparavant, étaient épargnées par ce problème. Il faudra chercher et trouver des solutions adaptées qui contribueront à répondre partiellement ou totalement à ces besoins.

La méthanisation apporte des solutions élégantes pour contribuer à la gestion de ces problèmes.

La méthanisation est un **processus naturel** que l'homme cherche à comprendre, à domestiquer, pour le faire fonctionner plus vite, avec de meilleurs rendements, et répondre à des fonctions bien précises comme la transformation de la matière organique sous forme solide ou soluble, pour produire de l'énergie!

Dans le domaine industriel, le traitement des effluents par méthanisation a été appliqué dans de nombreux pays. C'est aussi le cas en France, notamment dans les industries agroalimentaires.

Dans la filière déchets, en général, les grands pays européens autres que la France ont largement appliqué la méthanisation, qui a été un élément important de leur politique d'énergies renouvelables. Cela s'est traduit, par exemple, par de nombreuses implantations de production de « biogaz », dans des fermes en Allemagne notamment, ou dans d'autre pays comme le Danemark, l'Italie, le Royaume-Uni...

Le relèvement du prix de l'achat de « l'énergie issue du biogaz » en 2006 en France a relancé l'intérêt de ce type de traitement pour les déchets. Ceci a créé un marché important et un regain d'intérêt pour ce processus. Il s'applique aussi bien via de grosses unités que via des unités de taille plus modeste, voire au niveau des fermes uniquement.

XVIII La méthanisation

Objectif de l'ouvrage

L'objectif de cet ouvrage est d'apporter une vision aussi globale que possible sur les connaissances actuelles dans le domaine de la méthanisation de la matière organique. Il aborde non seulement les connaissances de base, les applications industrielles et agricoles, mais aussi les différentes « niches » dans lesquelles ce processus peut trouver sa place pour apporter ou contribuer à des solutions

C'est dans les domaines de la protection de l'environnement et de la production d'énergie que la méthanisation apporte sa contribution la plus significative et c'est donc dans ces domaines que l'on trouvera le plus grand nombre d'exemples industriels et agricoles.

Le niveau universitaire a été choisi comme guide.

Cet ouvrage servira aussi d'élément de réflexion et d'information pour l'ingénieur qui aura à faire des choix stratégiques et technologiques pour gérer les rejets de son usine. Il est donc également destiné à être un outil d'aide à la décision.

Structure de l'ouvrage

L'ouvrage est divisé en cinq parties regroupant dix-huit chapitres.

La première partie est orientée vers la connaissance du processus.

Le chapitre 1 s'intéresse au positionnement de la méthanisation et à la pertinence des réponses qu'elle peut apporter dans un contexte de développement durable.

Par sa spécificité et ses performances, elle permet non seulement d'économiser de l'énergie pour éliminer la demande chimique en oxygène (DCO) et la demande biologique en oxygène (DBO) des effluents par exemple (si on la compare aux boues activées), et ceci avec une plus grande rapidité tout en produisant de l'énergie sous forme de méthane.

L'homme, ici, n'a rien inventé et n'a fait que copier la nature.

Les chapitres suivants concernent la connaissance du processus. Le chapitre 2 aborde les aspects biochimiques et microbiologiques qui le régissent. Le chapitre 3 décrit les problèmes et les caractéristiques de sa mise en œuvre par l'homme.

La deuxième partie est consacrée à la législation et à la sécurité. Le chapitre 4 aborde tout d'abord les aspects législatifs liés à la mise en œuvre de cette technologie. Dans le domaine de l'environnement, la réglementation oriente les marchés, donc le développement, et les applications techniques. Les dispositions de sécurité se devaient d'être traitées ici. C'est chose faite dans cette édition.

Introduction XIX

La troisième partie est dédiée aux stratégies et aux traitements des effluents et des déchets.

Le chapitre 5 aborde la technologie des digesteurs pour le traitement des effluents industriels. Dans ce domaine, l'imagination humaine a été fertile. Les technologies sont variées et performantes. Il est regrettable de ne pas voir de plus nombreuses applications dans ce domaine puisque l'on compte moins de 100 digesteurs implantés en France pour traiter les effluents industriels. Ce n'est pas mieux dans les autres pays européens.

Les déchets organiques sont aussi traités par méthanisation. Dans ce domaine, les technologies sont, pour l'instant, en général plus classiques. Le chapitre 7 intègre l'aspect traitement des ordures ménagères, tandis que la méthanisation dite à la ferme et le traitement des boues de station d'épuration font l'objet de deux chapitres distincts, le 8 et le 9. Si, d'une manière générale, c'est souvent l'aspect environnemental qui incite les décideurs à aller vers la méthanisation, il n'en est pas de même dans le domaine agricole. Les agriculteurs peuvent, le plus souvent, retourner leurs déchets au sol. S'ils choisissent la méthanisation, c'est parce qu'ils y ont un intérêt économique. Ils se transforment en producteurs d'énergie, et en créateurs d'emplois lorsque l'économie du projet le permet.

La méthanisation des boues des stations d'épuration aérobies est un grand classique en France. La qualité des boues s'est nettement améliorée grâce au traitement des métaux à la source. On voit donc apparaître l'implantation de digesteurs sur des stations d'épuration urbaines de plus en plus petites (25 000 EH).

La méthanisation des déchets non dangereux en installation de stockage est un système extensif de traitement de déchets (chapitre 10). Dans ce domaine, la durée de vie de ces sites s'est considérablement réduite via la recirculation des lixiviats. Cette filière de traitement reste d'actualité, même si on cherche toujours à valoriser au mieux la matière organique.

Un traitement biologique ne se présente jamais seul ! Il a des acolytes comme les traitements physico-chimiques qui viennent compléter et améliorer les performances du traitement global ; ceci est décrit dans le chapitre 11. Ces prétraitements conditionnent le potentiel de récupération de la matière. Il y a très certainement beaucoup d'effort à faire dans ce domaine (pour les matières solides) pour améliorer les rendements tout en gardant des temps de séjour compatibles avec les exigences économiques.

Le chapitre 12 nous présente en premier un domaine méconnu dans les pays développés : la méthanisation des effluents urbains. Celle-ci n'est pas adaptée à nos régions, mais elle a une importance économique non négligeable en pays chauds. Le second domaine est la production d'électricité grâce à des piles à combustible. Pour ces piles, on parle beaucoup d'hydrogène, mais le méthane qui est produit plus facilement à partir des déchets organiques a également sa place comme source d'énergie de départ.

XX La méthanisation

Nous avons choisi d'introduire un chapitre sur les techniques analytiques utilisées en méthanisation. Cet aspect reste extrêmement important pour savoir comment est obtenue une valeur et donc ce qu'elle signifie. Nous avons vu partir des analyses de France vers l'Allemagne pour faire des mesures de... pH! Des stages de formation de techniques de base pour exploitant de digesteur sont maintenant disponibles en France.

Il ne serait pas possible de parler méthanisation sans aborder les aspects automatisation et modélisation. Ceci est fait dans le chapitre 14. C'est un domaine qui peut et qui doit apporter beaucoup à l'amélioration des caractéristiques de mises en œuvre de la méthanisation. Cette voie doit nous permettre de multiplier par deux ou trois les quantités de matière organique des effluents traitées dans les digesteurs, tout en conservant la fiabilité de sa mise en œuvre.

La quatrième partie est dédiée au biogaz. Dans un premier temps, nous aborderons dans le chapitre 15 la problématique de valorisation du biogaz.

Un long chapitre (chapitre 16) est consacré aux valorisations. C'est bien entendu un aspect fondamental qui voit apparaître de nouvelles techniques ouvrant les portes à de nouvelles applications. Actuellement, la valorisation la plus largement utilisée est la production d'électricité par cogénération ; c'est pourquoi un chapitre lui est consacré (chapitre 17).

Parler technique sans parler de coût ne sert que peu le développement d'une filière. C'est pourquoi la cinquième partie (chapitre 18) est consacrée à l'économie de la méthanisation.

Limite de l'ouvrage

Comme cela a été indiqué précédemment, cet ouvrage présente l'état de la méthanisation à un instant donné. Il n'a pas vocation à être exhaustif, mais à identifier certains aspects importants qui construisent cette filière.

La législation et les procédures évoluent. Le lecteur ne trouvera ici qu'une première approche et il aura le souci, en cas de besoin, de rechercher l'information souhaitée dans des documents plus spécialisés. Les techniques, en revanche, évoluent moins vite dans leurs principes, mais leur mise en œuvre s'enrichit constamment, soit au niveau des applications, soit au niveau des technologies.

Nous espérons que cet ouvrage contribuera à être une source d'information, un élément supplémentaire pour la réflexion et pour l'imagination.

Certains chapitres de la deuxième édition ont été supprimés, non pas, parce qu'ils manquaient d'intérêt, mais pour faire de la place à de nouveaux développements. Nous conseillons aux personnes intéressées par les émissions de méthane dans le milieu naturel, le traitement des composés traces organiques, la

Introduction XXI

mise en œuvre de piles microbiennes ou les microorganismes présents dans le biogaz par exemple de se référer à la seconde édition pour avoir plus d'information sur ces thèmes.

La méthanisation est et sera un élément structurel significatif pour la bonne gestion de l'impact des hommes sur la planète.

Ce livre est dédié à la mémoire de Claude Flanzy qui nous a quittés en 2014.

Œnologue réputé, Claude Flanzy a été directeur de Recherche à l'INRA et chef du département chargé de l'agronomie et de l'environnement. Il a su voir très vite les potentialités de la méthanisation sur l'amélioration de la qualité de notre environnement et dans les années 1990, ce n'était pas tellement commun en France. Grâce à lui, le Laboratoire de biotechnologie de l'environnement de l'INRA à Narbonne a pu se développer via de nouveaux locaux et un personnel INRA qui est passé de 6 à 28 membres permanents. Tous étaient focalisés sur la recherche dans les différentes sciences qui permettaient de développer la connaissance et l'application de la méthanisation. C'est ce qui a permis à la France d'être présente au plus haut niveau sur la scène internationale.

C'était aussi un homme bon, juste, honnête, un humaniste qui enrichissait ceux qui l'ont côtoyé.